
The logictools Package
Miles Min Yin Cheang

May 3, 2025

Contents

1 Purpose of this package 2

2 The formallogic environment 3
2.1 Introduction . 3
2.2 Quantifier stacks . 3

2.2.1 Declaring quantifiers . 4
2.3 Other syntax . 4
2.4 Typesetting features . 5

2.4.1 Customisation . 5

3 The ‘oxford’ package option 6
3.1 Good looking ‘proof from φ to ψ’ . 6
3.2 Bits and Bobs . 7

1

1 Purpose of this package

The star of the show here is the formallogic environment. Prior to the development of this
environment, spending way too much time fiddling around with spacing commands was a
familiar experience for every logician. Most of the spacing you need in a logical statement is
context sensitive, so only so much can be done through basic macros. Furthermore, using too
many macros destroys the readability of the code, and slows down writing to a crawl.

In an effort to change this, I wrote an environment that both speeds up writing formal logic
(by offering shorter syntax) and improves the output considerably. The details of how this
works will be presented in the upcoming sections. The default settings were made with LATEX’s
default math font in mind, with the intention that the user come up with a preset that matches
their preferences. The options can be changed on the fly, so more than one preset can be used
in different parts of the document.

Other than this, the option ‘oxford’ will load a few neat macros that might be of particular
interest to those studying logic at the University of Oxford; they provide shortcuts to notations
that are commonly used in the first-year courses. It is likely that this section of the package will
be updated with more content as I go through my degree.

2

2 The formallogic environment

2.1 Introduction

This interface, accessed through the environment named formallogic, or the command
\fmllgc{<content>}, helps to type formal logic in LATEX. Here are some of its uses:

Code: Output:
|forall, x ; exists, y| (Ryx) ∀x ∃y (Ryx)

|f,x;e,y|(Ryx) ∀x ∃y (Ryx)

((P \land Q) \liff R) LL P ∧Q M ↔ R MM

((P \land Q) \liff R) ((P ∧Q) ↔ R))

((P \land Q) \liff R) ((P ∧Q) ↔ R))

You will be shown how to accomplish every one of these in the following documentation.
Note that there are various user-defined parameters controlling the typesetting (e.g. spacing,
kerning, parenthesis style); this is how the same code can produce wildly different outputs.
Furthermore, the user can control certain parts of the syntax (e.g. the names of quantifiers).

2.2 Quantifier stacks

Quantifier stacks are a concept introduced for typesetting logical quantifiers:

∀x ∃y ∀x1 ∃z ∈ R

| forall, x ; exists, y ; forall, x_1 ; exists, z\in\mathbb{R} |

Quantifier stacks are used by the formallogic environment. They are delimited by ‘|’. A
quantifier stack is made up of quantifiers, written in the form <label>,<argument>. The label
consists of some text that indicates which quantifier will be used, while the argument can be
any math mode code. These quantifiers are separated by ‘;’. The formallogic environment
processes these stacks, turning them into a fully typeset sequence of quantifiers.

Spacing on either side of the label and argument is trimmed, but spacing inside the label is
not. This means ‘for all’ is a distinct label from ‘forall’.

3

2.2.1 Declaring quantifiers

A declared quantifier has the following form:

...
<left padding>

<command>
<right padding>

...

e.g.
10mu

∃!
5mu
x

Syntax for quantifier declaration:

\DeclareQuantifier{<label>}{<command>}[<left pad>][<right pad>]

This command will globally declare (or redeclare) a quantifier with the associated properties.
The label consists of some text that refers to this quantifier; the command should be a LaTeX com-
mand providing the quantifier symbol; left and right padding are optional padding values on ei-
ther side of the command. For instance: \DeclareQuantifier{ex!}{\exists !}[5mu][1.5mu]

provides a quantifier that can be used like: |ex!,x;forall,y| → ∃!x ∀y .

\LDeclareQuantifier{<label>}{<command>}[<left pad>][<right pad>]

This command does the same thing, but locally. With this, one can quickly redefine a
quantifier in the middle of the environment, and not worry about the changes carrying over to
other instances of the environment.

2.3 Other syntax

• Parentheses written consecutively (without spaces) will become parenthesis stacks, and
use parstackkern instead of parinnerpad as spacing.

• [<arg 1>/<arg 2>] → [<1>/<2>], allowing one to write easy variable substitutions inline1.

• .= → .
=, providing quick access to \doteq.

One can use "<content>" within the environment to escape <content>, preventing it from
being parsed by the environment; this is useful when one wishes to use a character that is active
in the syntax of the environment. The delimiter used here is the double quote, " (U+0022).

For example, this can be used to write a function with single parentheses in a double
parenthesis environment, or a list using commas inside of a quantifier stack2:

1Note that this means ‘[’ is by default active in the syntax, and so requires escaping if one wishes to use it without
following it with ‘/’ and then ‘]’.

2Actually, ‘,’ and ‘;’ only need escaping when inside of a quantifier stack, delimited by ‘|’.

4

1 \logictoolsoptions{partype=double, parinnerpad=3.5mu}

2 \begin{formallogic}

3 |forall,"x_1,x_2,x_3,\ldots";exists,y|(f"(y)"=x_1+x_2+x_3+\ldots\land Py)

4 \end{formallogic}

Produces: ∀x1, x2, x3, . . . ∃y Lf(y) = x1+ x2+ x3+ . . . ∧ Py M

The only syntax that is not escaped like this is .= → .
=, since checks for escaping slightly

lower performance, and this can already be escaped with a space between the two characters.

2.4 Typesetting features

2.4.1 Customisation

The formallogic environment offers many customisation options through user-adjustable keys.
They may be changed with the command \logictoolsoptions{<key>=<value>, ... } (in
either the document or the preamble). A list of key-value pairs may also be given in an optional
argument to the formallogic environment. The following keys are available:

Key Description Accepts Default

partype Determines the type of parenthesis used,
single ‘(...)’ or double ‘L ... M’.

single,

double

single

parinnerpad Extra space inserted between parentheses
and their content.

mu 0.9mu

parstackkern Kern applied to stacked parentheses. mu -0.9mu

italiccorrection Extra kern between closing parentheses and
their content, to offset italic math font.

mu 1.12mu

parvoffset Amount to raise parentheses by; helps
center them on text in some fonts.

ex 0.2ex

quantskip Default skip inserted between quantifiers. mu 4.32mu

lastquantskip Default skip inserted after last quantifier. mu 4.32mu

scriptspace Determines space after sub/superscript,
same as the LATEX primitive.

em -0.025em

5

3 The ‘oxford’ package option

This package option adds a few macros for common notations at University of Oxford.

3.1 Good looking ‘proof from φ to ψ’

‘A proof π from φ to ψ’ (perhaps with some discharged assumptions) might be notated like this:

1 \begin{prooftree}

2 \alwaysNoLine

3 \AxiomC{\fbox{π}}

4 \UnaryInfC{\vdots}

5 \UnaryInfC{ψ}

6 \AxiomC{\fbox{π}$^{[\varphi]}$}

7 \UnaryInfC{\vdots}

8 \UnaryInfC{ϕ}

9 \alwaysSingleLine

10 \andlabel{Intro}3

11 \BinaryInfC{$\psi \land \phi$}

12 \end{prooftree}

π

...
ψ

π [φ]

...
ϕ

(∧ Intro)
ψ ∧ ϕ

The output is not ideal; introducing discharged assumptions puts the box off center in an
annoying way, and the \vdots are not aligned correctly. The following command achieves
better output with nicer syntax:

\prooffrom{<1>}
<2>

{<3>}

<2> = Either ‘^’ (for superscript), ‘_’ (for subscript), or nothing (for centered script).
+

Some content delimited by [· · ·] (for square-bracketed content) or < · · · >
(for non-square-bracketed content).

So \prooffrom{π}{ψ}, \prooffrom{π_1}^[φ]{ϕ} become:

π
...
ψ

π1 [φ]

...
ϕ

(∧ Intro)
ψ ∧ ϕ

3The macro \andlabel{#1} gives \RightLabel{\scriptsize(\land\hspace{1px}#1)}.

6

3.2 Bits and Bobs

\difmost{<variable>}[Math mode only.]

Gives the variable assignment notation: α v∼ β, meaning ‘β differs from α in at most v’.

\lcma

Gives◦, the ‘logical comma’ that Professor Beau Mount uses in the PTLP lecture notes.

\semval{<sent.>}{<structure>}[<var.assign.>]

Gives |<sent.>|αA, the semantic value of some sentence over model A with variable assignment
α. The input <structure> is converted to \mathcal{...}. If the input <var.assign.> is a
single latin letter (e.g. ‘a’, ‘b’, ‘d’ ‘g’), it is converted into an appropriate greek one4.

\lsym{<language>}[<signature>]5

Gives L◦, where ◦ can be 1,2,= or something else. Also optionally allows the addition of a
superscript, for a signature. The ‘=’ uses \@ltoolsshorteq, ‘=’, which is prettier in most fonts.

4This respects capitalisation, so one gets γ from ‘g’, and Γ from ‘G’.
5This command loads even without the package option ‘oxford’. Why? Because I couldn’t get it to work otherwise.

7

	Purpose of this package
	The formallogic environment
	Introduction
	Quantifier stacks
	Declaring quantifiers

	Other syntax
	Typesetting features
	Customisation

	The `oxford' package option
	Good looking `proof from to '
	Bits and Bobs

