
THE LIFELINES PROGRAMMING SUBSYSTEM AND
REPORT GENERATOR

LifeLines Version 3.0.61

Thomas T. Wetmore , IV

THE LIFELINES PROGRAMMING SUBSYSTEM AND REPORT GENERATOR : LifeLines
Version 3.0.61
by Thomas T. Wetmore , IV

Table of Contents
1. Report Programming Manual...1

Introduction ..1
Tutorial Ahnentafel report ..1
Template for creating new reports...4
Invoking Reports..5

2. LIFELINES PROGRAMMING REFERENCE...7
Procedures and Functions...7
Comments ...7
Statements ...8
Expressions..10
Include Feature ...10
Built-in Functions ...10
Value Types ...10
Iterators..12
Arithmetic and Logic Functions...13
Trigonometric and Spherical Calculations ...16
Person Functions ..17
Family Functions ..24
Other types of records ...28
List Functions..28
Table Functions...34
GEDCOM Node Functions ...35
Event and Date Functions ...37
Date Arithmetic ..42
Value Extraction Functions ...43
User Interaction Functions..45
String Functions..47
Output Mode Functions ..51
Person Set Functions and GEDCOM Extraction..54
Record Update Functions..58
Record Linking Functions...59
Miscellaneous Functions ...59
Deprecated Functions ..62

iii

iv

Chapter 1. Report Programming Manual

Introduction
The LifeLines programming subsystem lets you produce reports in any style or lay-
out. You may generate files in troff , Postscript , TeX, SGML or any other ASCII-
based format, for further text processing and printing. You access the report gener-
ator by choosing the r command from the main menu. You may also use the pro-
gramming subsystem to create query and other processing programs that write their
results directly upon the screen. For example, there is a LifeLines program that
computes the relationship between any two persons in a database.

Each LifeLines program is written in the LifeLines programming language, and
the programs are stored in normal files. When you direct LifeLines to run a pro-
gram, it asks you for the name of the program file, asks you where you want the
program’s output written, and then runs the program.

Tutorial Ahnentafel report
For example, say you want LifeLines to generate an ahnentafel (ancestor) report for
Tom Wetmore. Such a report would show Tom Wetmore, his parents, grandparents,
great-grandparents, and so on. It would like like the following:

Example 1-1. Example of ahnentafel report

1. Thomas Trask WETMORE IV
b. 18 December 1949, New London, Connecticut
2. Thomas Trask WETMORE III
b. 15 October 1925, New London, Connecticut
3. Joan Marie HANCOCK
b. 6 June 1928, New London, Connecticut
4. Thomas Trask WETMORE Jr
b. 5 May 1896, New London, Connecticut
d. 8 November 1970, New London, Connecticut
5. Vivian Genevieve BROWN
b. 5 April 1896, Mondovi, Wisconsin
6. Richard James HANCOCK
b. 18 August 1904, New London, Connecticut
d. 24 December 1976, Waterford, Connecticut
7. Muriel Armstrong SMITH
b. 28 October 1905, New Haven, Connecticut
8. Thomas Trask WETMORE Sr
b. 13 March 1866, St. Mary’s Bay, Nova Scotia
d. 17 February 1947, New London, Connecticut
9. Margaret Ellen KANEEN
b. 27 October 1859, Liverpool, England
d. 10 May 1900, New London, Connecticut
... lots more

Here is a LifeLines program that generates this report:

1

Chapter 1. Report Programming Manual

Example 1-2. Example of ahnentafel report script

/*
* @progname ahnentafel_tutorial.ll
* @version 1.0
* @author Wetmore
* @category sample
* @output text
* @description
*
* Generate an ahnentafel chart for the selected person (tutorial sample).
*/

proc main ()
{

getindi(indi)
list(ilist)
list(alist)
enqueue(ilist, indi) /* list of people needing to be displayed */
enqueue(alist, 1) /* ancestor numbers for people on ilist */

/*
Our basic loop is we take the next person who needs to be displayed,
display them, and then record their parents as needing to be displayed.
*/

while (indi, dequeue(ilist)) {
/* display person we just pulled off list */

set(ahnen, dequeue(alist))
d(ahnen) ". " name(indi) nl()
if (e, birth(indi)) { " b. " long(e) nl() }
if (e, death(indi)) { " d. " long(e) nl() }

/* add person’s parents to list to display */
if (par, father(indi)) {

enqueue(ilist, par)
enqueue(alist, mul(2,ahnen))

}
if (par,mother(indi)) {

enqueue(ilist, par)
enqueue(alist, add(1,mul(2,ahnen)))

}
}

}

Say this program is in the file ahnentafel_tutorial . When you choose the r option
from the main menu, LifeLines asks:

What is the name of the report program?
enter string:

You enter ahnentafel_tutorial . Since the program generates a report, LifeLines
asks where to write that report:

What is the name of the output file?
enter file name:

You enter a file name, say my.ahnen . LifeLines reads the program ahnen, executes
the program, and writes the report output to my.ahnen . LifeLines reports any syn-
tax or run-time errors found while trying to run the program.

2

Chapter 1. Report Programming Manual

A LifeLines program is made up of procedures and functions; every program must
contain at least one procedure named main . The main procedure runs first; it may call
other procedures, functions and built-in functions. In the ahnentafel example there is
only one procedure.

In the example program, there are some comments at the top, to tell the reader a bit
about the program. The comments run from /* to */ , and are not necessary (but are
suggested).

A procedure body is a sequence of statements. In the example program, the first five
statements are:

getindi(indi)
list(ilist)
list(alist)
enqueue(ilist, indi)
enqueue(alist, 1)

The first statement calls the getindi (get individual) built-in function, which causes
LifeLines to ask you to identify a person using the zip browse style of identification:

Identify person for interpreted report
enter name:

After you identify a person, he or she is assigned to the variable indi . The next
two statements declare two list variables, ilist and alist . Lists hold sequences
of things; there are operations for placing things on lists, taking things off, and it-
erating through the list elements. In the example, ilist holds a list of ancestors, in
ahnentafel order, who have not yet been reported on, and alist holds their respec-
tive ahnentafel numbers.

The next two statements call the enqueue function, adding the first members to both
lists. The person identified by the getindi function is made the first member of
ilist , and the number one, this person’s ahnentafel number, is made the first mem-
ber of alist .

The rest of the program is:

while (indi, dequeue(ilist)) {
set(ahnen, dequeue(alist))
d(ahnen) ". " name(indi) nl()
if (e, birth(indi)) { " b. " long(e) nl() }
if (e, death(indi)) { " d. " long(e) nl() }
if (par, father(indi)) {

enqueue(ilist, par)
enqueue(alist, mul(2,ahnen))

}
if (par, mother(indi)) {

enqueue(ilist, par)
enqueue(alist, add(1,mul(2,ahnen)))

}
}

This is a loop that iteratively removes persons and their ahnentafel numbers from the
two lists, and then prints their names and birth and death information. If the persons
have parents in the database, their parents and their parents’ ahnentafel numbers are
then put at the ends of the lists. The loop iterates until the list is empty.

The loop is a while loop statement. The line:

while (indi, dequeue(ilist)) {

3

Chapter 1. Report Programming Manual

removes (via dequeue) a person from ilist , and assigns the person to variable indi .
As long as there are persons on ilist , another iteration of the loop follows.

The statement:

set(ahnen, dequeue(alist))

is an assignment statement. The second argument is evaluated; its value is assigned
to the first argument, which must be a variable. Here the next number in alist is
removed and assigned to variable ahnen . This is the ahnentafel number of the person
just removed from ilist .

The line:

d(ahnen) ". " name(indi) nl()

contains four expression statements; when expressions are used as statements, their
values, if any, are treated as strings and written directly to the report output file. The
d function converts its integer argument to a numeric string. The ". " is a literal (con-
stant) string value. The name function returns the default form of a person’s name.
The nl function returns a string containing the newline character.

The next two lines:

if (e, birth(indi)) { " b. " long(e) nl() }
if (e, death(indi)) { " d. " long(e) nl() }

write out basic birth and death information about a person. These lines are if state-
ments. The second argument in the conditional is evaluated and assigned to the first
argument, which must be a variable. The first if statement calls the birth function,
returning the first birth event in a person’s record. If the event exists it is assigned to
variable e, and the body (the items between the curly brackets) of the if statement is
executed. The body consists of three expression statements: a literal, and calls to the
long and nl functions. Long takes an event and returns the values of the first DATE
and PLAC lines in the event.

Finally in the program is:

if (par, father(indi)) {
enqueue(ilist,par)
enqueue(alist,mul(2,ahnen))
}
if (par,mother(indi)) {
enqueue(ilist,par)
enqueue(alist,add(1,mul(2,ahnen)))
}

These lines add the father and mother of the current person, if either or both are in the
database, to ilist . They also compute and add the parents’ ahnentafel numbers to
alist . A father’s ahnentafel number is twice that of his child. A mother’s ahnentafel
number is twice that of her child plus one. These values are computed with the mul
and add functions.

Template for creating new reports
The following is a good template to use when creating a new report from scratch.

/*
* @progname reportname

4

Chapter 1. Report Programming Manual

* @version Version Number.
* @author report author and possible email address
* @category ????
* @output Format of Report Output
* @description The following paragraph is used to populate index.html.
*
* This report (Note, the text in the 1st paragraph following the @keyword
* lines is used as a description in the automatically generated index.html
* file. The text following the @description is not used for this purpose.)
* The description lines can be written with or without the *’s on the left
* they will be removed when generating index.html.
*
* Additional descriptive text

*/

proc main()
{

}

Invoking Reports
As mentioned earlier, reports may be invoked interactively from the main menu via
the r option from the main menu.

Alternatively, llines may be called with the -x option to have it immediately run a
report. For example, to have lifelines run the example ahnentafel report above, on
a database named wetmore, this command llines -x ahnentafel_tutorial wetmore
would be used.

For more efficient operation from scripts, the lifelines distribution includes a
smaller program llexec which includes all functionality of lifelines except the
curses GUI. llexec is made specifically, therefore, for invocations such as llexec -x
ahnentafel_tutorial wetmore

5

Chapter 1. Report Programming Manual

6

Chapter 2. LIFELINES PROGRAMMING REFERENCE

LifeLines programs are stored in files you edit with a screen editor. Programs are
not edited from within the LifeLines program; edit them as you would any text
file. The programs may be stored in any directories; they do not have to be kept
in or associated with LifeLines databases. You may set the LLPROGRAMS shell
variable to hold a list of directories that LifeLines will use to automatically search
for programs when you request program execution.

Procedures and Functions
A LifeLines program is made up of one or more procedures and functions. A pro-
cedure has format:

proc name(params) { statements }

Name is the name of the procedure, params is an optional list of parameters sepa-
rated by commas, and statements is a list of statements that make up the procedure
body. Report generation begins with the first statement in the procedure named main .
Procedures may call other procedures and functions. Procedures are called with the
call statement described below.When a procedure is called, the statements making
up its body are executed.

A function has format:

func name(params) { statements }

Name, params and statements are defined as in procedures. Functions may call other
procedures and functions. When a function is called the statements that make it up
are executed. A function differs from a procedure by returning a value to the proce-
dure or function that calls it. Values are returned by the return statement, described
below. Recursive functions are allowed. A function is called by invoking it in an ex-
pression.

Function and procedure parameters are passed by value except for list, set and table
types which are passed by reference. Redeclaration of a parameter instantiates a new
variable of the stated or implied type. The previous instance continues to exist in the
scope of the caller.

Comments
You may comment your LifeLines programs using the following notation:

/*...comment text including any characters except */... */

These comments may be inserted anywhere in the program file.

You should put in some report header comments, because they will provide useful
text for your report when it is included in the report list seen by the user who uses
the lifelines pick report menu function. Report header comments are some specific
comments at the top of the report, with keywords preceded by @ signs. The following
is an illustration of report header comments, with explanations inside them:

/*
* @progname The name of the report without the

7

Chapter 2. LIFELINES PROGRAMMING REFERENCE

extension. This shows in the pick report option.
* @version Version Number of the report. This
is stored here and not in the report name.
* @author Name of the author of this report
and email address if he/she desires.
* @category ????
* @output Modifies Database | text | HTML |
GEDCOM | RTF | XML | PostScript | etc.
* @description The first paragraph after this is
used to generate the description in the index.html.

This report
*/

Comments begin with a /* and end with a */ . Comments may appear on lines of
their own or on lines that have program constructs. Comments may span many lines.
Comments may not be nested.

Statements
There are a number of statement types. The simplest is an expression statement, an
expression that is not part of any other statement or expression. Expressions are de-
fined more fully below. An expression statement is evaluated, and if its value is non-
null (non-zero), it is assumed to be a string, and written to the program output file. If
its value is null, nothing is written to the output file. For example, the expression

name(indi)

, where indi is a person, returns the person’s name and writes it to the output file. On
the other hand, the expression

set(n, nspouses(indi))

assigns the variable n the number of spouses that person indi has, but since set
returns null, nothing is written to the output file.

The programming language includes if statements, while statements and procedure
call statements, with the following formats:

if ([varb,] expr) { statements }
[elsif ([varb], expr) { statements }]*

[else { statements }]

while ([varb,] expr) { statements }

call name(args)

Square brackets indicate optional parts of the statement syntax. An if statement is
executed by first evaluating the conditional expression in the if clause. If non-zero,
the statements in the if clause are evaluated, and the rest of the if statement, if any,
is ignored. If the value is zero, and there is an elsif clause following, the conditional
in the elsif clause is evaluated, and if non-zero, the statements in that clause are exe-
cuted. Conditionals are evaluated until one of them is non-zero, or until there are no
more. If no conditional is non-zero, and if the if statement ends with an else clause,
the statements in the else clause are executed. There are two forms of conditional
expressions. If the conditional is a single expression, it is simply evaluated. If the
conditional is a variable followed by an expression, the expression is evaluated and
its value is assigned to the variable.

8

Chapter 2. LIFELINES PROGRAMMING REFERENCE

Note that if treats null strings as false, but empty strings as true. This has the benefit
that

if (birth(indi))

will return true if there is a BIRT record, even if it is empty, but will return false if
there is no BIRT record at all.

The while statement provides a looping mechanism. The conditional is evaluated,
and if non-zero, the body of the loop is executed. After each iteration the expression
is reevaluated; as long as it remains non-zero, the loop is repeated.

The call statement provides procedure calls. Name must match one of the procedures
defined in the report program. Args is a list of argument expressions separated by
commas. Recursion is allowed. When a call is executed, the values of its arguments
are evaluated and used to initialize the procedure’s parameters. The procedure is
then executed. When the procedure completes, execution resumes with the first item
after the call.

The following report language statements are commonly encountered only near the
top of a report:

char_encoding(string)

require(string)

option(string)

include(string)

global(varb)

The char_encoding statement specifies what character encoding scheme is used by
the report, so that the report processor can correctly interpret bytes not in ASCII (e.g.,
accented letters). An example specifying a character encoding common in Western
Europe:

char_encoding("ISO-8859-1")

The option statement allows the report writer to specify options. The only option
currently available is "explicitvars", which causes any use of variables not previously
declared or set to be reported as a parsing error. The require statement allows the re-
port writer to specify that this report needs a version of the report interpreter no older
than that specified. The include statement includes the contents of another file into
the current file; its string expression is the name of another LifeLines program
file. It is described in more detail below. The global statement must be used outside
the scope of any procedure or function; it declares a variable to have global scope.
The variable is initialized to 0.

The report language also includes the following statements, which mimic some com-
mon programming languages:

set(varb, expr)

continue()

break()

return([expr])

9

Chapter 2. LIFELINES PROGRAMMING REFERENCE

The set statement is the assignment statement; the expression is evaluated, and its
value is assigned to the variable . The continue statement jumps to the bottom of
the current loop, but does not leave the loop. The break statement breaks out of the
most closely nested loop. The return statement returns from the current procedure
or function. Procedures have return statements without expressions; functions have
return statements with expressions. None of these statements return a value, so none
has a direct effect on program output.

Expressions
There are four types of expressions: literals, numbers, variables and built-in or user
defined function calls.

A literal is any string enclosed in double quotes; its value is itself. A number is any
integer or floating point constant; its value is itself. A variable is a named location that
can be assigned different values during program execution. The value of a variable
is the last value assigned to it. Variables do not have fixed type; at different times in
a program, the same variable may be assigned data of completely different types. An
identifier followed by comma-separated list of expressions enclosed in parentheses,
is either a call to a built-in function or a call to a user-defined function.

Include Feature
The LifeLines programming language provides an include feature. Using this fea-
ture one LifeLines program can refer to other LifeLines programs. This feature is
provided by the include statement:

include(string)

where string is a quoted string that is the name of another LifeLines program file.
When an include statement is encountered, the program that it refers to is read at that
point, exactly as if the contents of included file had been in the body of the original
file at that point. This allows you to create LifeLines program library files that can
be used by many programs. Included files may in turn contain include statements,
and so on to any depth. LifeLines will use the LLPROGRAMS shell variable, if set,
to search for the include files. Each file included with a include statement is only read
once. If multiple include statements are encountered that include the same file, only
the first statement has any effect.

The only main procedure actually executed is the one in the report the user chose.
main procedures in other reports which are included do not get run. This allows a
module intended to be included in other programs to have a main procedure for
test purposes. If multiple functions or procedures with the same name are included
(other than the name main) a runtime error is generated and the program is not run.

Built-in Functions
There is a long list of built-in functions, and this list will continue to grow for some
time. The first subsection below describes the value types used in LifeLines pro-
grams; these are the types of variables, function parameters and function return val-
ues. In the remaining sections the built-in functions are separated into logical cate-
gories and described.

10

Chapter 2. LIFELINES PROGRAMMING REFERENCE

Value Types

ANY

union of all types

BOOL

boolean (0 represents false; anything else represents true)

EVENT

event; reference to substructure of nodes in a GEDCOM record (reference)

FAM

family; reference to a GEDCOM FAM record (reference)

FLOAT

floating point number (may be used anywhere an INT may be used)

INDI

person; reference to a GEDCOM INDI record (reference)

INT

integer (on most systems a 32-bit signed value)

LIST

arbitrary length list of any values (reference)

NODE

GEDCOM node; reference to a line in a GEDCOM tree/record (reference)

NUMBER

union of all arithmetic types (INT and FLOAT)

SET

a collection of persons each with a value (see person sets below).

11

Chapter 2. LIFELINES PROGRAMMING REFERENCE

STRING

text string

TABLE

keyed look-up table (reference)

VOID

type with no values

In the summaries of built-in functions below, each function is shown with its argu-
ment types and its return type. The types are from the preceding list. Sometimes an
argument to a built-in function must be a variable; when this is so its type is given as
XXX_V, where XXX is one of the types above. The built-ins do not check the types of
their arguments. Variables can hold values of any type, though at any one time they
will hold values of only one type. Note that EVENT is a subtype of NODE, and BOOL
is a subtype of INT. Built-ins with type VOID actually return null (zero) values.

Reference types (denoted above in parentheses) obey "pointer semantics", which is
to say that assigning one to another variable results in both variables pointing at
the same data (no copy is made). Therefore, if you pass a string to a function which
changes the string, the caller does not see the change, because a string is not a refer-
ence type. On the other hand, if you pass a table to a function which alters the table,
the caller does see the change, because a table is a reference type.

Iterators
The report generator provides a number of iterator statements for looping through
genealogical and other types of data. For example, the children statement iterates
through the children of a family, the spouses statement iterates through the spouses
of a person, and the families statement iterates through the families that a person is
a spouse or parent in.

Usually the first argument to the iterator is an expression that evaluates to an indi-
vidual or a family. The other arguments of the iterator are variable names that are set
with values for each iteration. The last argument is often a variable name used as a
counter. It starts with the value of one and is increased by one for each iteration of
the loop. After completion of the iteration, these variables have the value null.

children(afam,indi,cnt) { commands }

For example, the first argument to children is the family that the iterator will operate
on. This iterator will execute the block of commands for each child in the specified
family. The second argument is set to each child in the family in the order they are
listed in the family and the third argument is the loop counter which starts at one
and is incremented by one each time the the block of commands is executed. The two
variables indi and cnt will have the value null after the iteration has completed.

For the purpose of traversing all records in the database, the following iterators may
be used:

forindi Iterate over all people

12

Chapter 2. LIFELINES PROGRAMMING REFERENCE

forfam Iterate over all families

forsour Iterate over all sources

foreven Iterate over all events

forothr Iterate over all other recoure types

All the iterators are described in more detail later in the section where their definition
occurs.

Arithmetic and Logic Functions

NUMBERadd (NUMBER, NUMBER ...);

addition - two to 32 arguments

NUMBERsub (NUMBER, NUMBER);

subtraction

NUMBERmul (NUMBER, NUMBER ...);

multiplication - two to 32 arguments

NUMBERdiv (NUMBER, NUMBER);

division

INT mod(INT , INT);

modulus (remainder)

13

Chapter 2. LIFELINES PROGRAMMING REFERENCE

NUMBERexp (NUMBER, INT);

exponentiation

NUMBERneg (NUMBER);

negation

FLOAT float (INT);

convert int to float

INT int (FLOAT);

convert float to int

VOID incr (NUMBER, NUMBER);

increment variable by second argument (or by 1 if no second argument)

VOID decr (NUMBER, NUMBER);

decrement variable by second argument (or by 1 if no second argument)

BOOL and (BOOL, BOOL ...);

logical and - two to 32 arguments

14

Chapter 2. LIFELINES PROGRAMMING REFERENCE

BOOL or (BOOL, BOOL ...);

logical or - two to 32 arguments

BOOL not (BOOL);

logical not

BOOL eq(ANY, ANY);

equality (not strings)

BOOL ne(ANY, ANY);

non-equality

BOOL lt (ANY, ANY);

less than

BOOL gt (ANY, ANY);

greater than

BOOL le (ANY, ANY);

less than or equal

15

Chapter 2. LIFELINES PROGRAMMING REFERENCE

BOOL ge(ANY, ANY);

greater than or equal

Add, sub , mul and div do normal arithmetic of integer or floating values. If any
operand is float, the result is float. Functions add and mul can have two to 32 ar-
guments; the sum or product of the full set of arguments is computed. Functions sub
and div have two arguments each; sub subtracts its second argument from its first,
and div divides its first argument by its second. The modfunction returns the remain-
der after dividing the first parameter by the second. If the second argument to div
or mod is zero, these functions return 0 and generate a run time error. Exp performs
integer exponentiation. Neg negates its argument. The functions float and int can
be used to explicitly convert a value to float or int where needed.

Incr and decr increment by one and decrement by one, respectively, the value of
a variable. The argument to both functions must be a variable. These functions take
an optional second argument which is the amount to increment or decrement the
variable by.

And and or do logical operations. Both functions take two to 32 arguments. All argu-
ments are and’ed or or’ed together, respectively. The arguments are evaluated from
left to right, but only up to the point where the final value of the function becomes
known. Not does the logical not operation.

Eq, ne , lt , le , gt and ge evaluate the six ordering relationships between two integers.

Trigonometric and Spherical Calculations

FLOAT sin (FLOAT);

compute sine of argument in degrees

FLOAT cos (FLOAT);

compute cosine of argument in degrees

FLOAT tan (FLOAT);

compute tangent of argument in degrees

16

Chapter 2. LIFELINES PROGRAMMING REFERENCE

FLOAT arcsin (FLOAT);

compute inverse sine of argument

FLOAT arccos (FLOAT);

compute inverse cosine of argument

FLOAT arctan (FLOAT);

compute inverse tangent of argument

VOID dms2deg(INT degree , INT minute , INT second , FLOAT_V decimal);

convert (degree, minute, second) to decimal degrees

void deg2dms(FLOAT decimal , INT_V degree , INT_V minute , INT_V
second);

convert decimal degrees to (degree, minute, second)

FLOAT spdist (FLOAT lat0 , FLOAT long0 , FLOAT lat1 , FLOAT long1);

compute distance between two locations

The trigonometric functions specify angles using degrees. The functions deg2dms and
dms2deg are provided to convert between (degree,minute,second) notation and dec-
imal degree representations for angles.

spdist estimates the distance between two spherical coordinates. The arguments
provided are, in order, first latitude, first longitude, second latitude, second longi-
tude. The result is in kilometers.

17

Chapter 2. LIFELINES PROGRAMMING REFERENCE

Person Functions

STRING name(INDI , BOOL);

default name of

STRING fullname (INDI , BOOL, BOOL, INT);

many name forms of

STRING surname (INDI);

surname of

STRING givens (INDI);

given names of

STRING trimname (INDI , INT);

trimmed name of

EVENT birth (INDI);

first birth event of

18

Chapter 2. LIFELINES PROGRAMMING REFERENCE

EVENT death (INDI);

first death event of

EVENT burial (INDI);

first burial event of

INDI father (INDI);

first father of

INDI mother (INDI);

first mother of

INDI nextsib (INDI);

next (younger) sibling of

INDI prevsib (INDI);

previous (older) sibling of

STRING sex (INDI);

sex of

19

Chapter 2. LIFELINES PROGRAMMING REFERENCE

BOOL male (INDI);

male predicate

BOOL female (INDI);

female predicate

STRING pn(INDI , INT);

pronoun referring to

INT nspouses (INDI);

number of spouses of

INT nfamilies (INDI);

number of families (as spouse/parent) of

FAM parents (INDI);

first parents’ family of

STRING title (INDI);

first title of

20

Chapter 2. LIFELINES PROGRAMMING REFERENCE

STRING key (RECORD, BOOL);

internal key of (works for any record type)

STRING soundex (INDI);

SOUNDEX code of

NODE inode (INDI);

root GEDCOM node of

NODE root (INDI);

root GEDCOM node of

INDI indi (STRING);

find person with key value

INDI firstindi (void);

first person in database in key order

INDI lastindi (void);

last person in database in key order

21

Chapter 2. LIFELINES PROGRAMMING REFERENCE

INDI nextindi (INDI);

next person in database in key order

INDI previndi (INDI);

previous person in database in key order

spouses (INDI , INDI_V , FAM_V, INT_V) { commands }

loop through all spouses of

families (INDI , FAM_V, INDI_V , INT_V) { commands }

loop through all families (as spouse) of

forindi (INDI_V , INT_V) { commands }

loop through all persons in database

mothers (INDI , INDI_V , FAM_V, INT_V) { commands }

loop through all female parents of a person

fathers (INDI , INDI_V , FAM_V, INT_V) { commands }

loop through all male parents of a person

22

Chapter 2. LIFELINES PROGRAMMING REFERENCE

Parents (INDI , FAM, INT_V) { commands }

loop through all familes a person is a child of

These functions take a person as a parameter and return information about him or
her.

Namereturns the default name of a person; this is the name found on the first 1 NAME
line in the person’s record; the slashes are removed and the surname is made all
capitals; name can take an optional second parameter - if it is true the function acts as
described above; if false, the surname is kept exactly as it is in the record.

Fullname returns the name of a person in a variety of formats. If the second param-
eter is true the surname is shown in upper case; otherwise the surname is as in the
record. If the third parameter is true the parts of the name are shown in the order as
found in the record; otherwise the surname is given first, followed by a comma, fol-
lowed by the other name parts. The fourth parameter specifies the maximum length
field that can be used to show the name; various conversions occur if it is necessary
to shorten the name to fit this length.

Surname returns the surname of the person, as found in the first 1 NAMEline; the
slashes are removed. Givens returns the given names of the person in the same order
and format as found in the first 1 NAMEline of the record. Trimname returns the
default name of the person trimmed to the maximum character length given in the
second variable.

Birth , death , and burial return the first birth, death, and burial event in the per-
son’s record, respectively. An event is a level 1 GEDCOMnode. If there is no matching
event these functions return null.

Father , mother , nextsib and prevsib return the father, mother, next younger sib-
ling and next older sibling of the person, respectively. If the person has more than
one father (mother) the father (mother) function returns the first one. These func-
tions return null if there is no person in the role.

Sex returns the person’s sex as the string M if the person is male, F if the person is
female, or U if the sex of the person is not known. Male and female return true if the
person is male or female, respectively, or false if not.

Pn generates pronouns, useful when generating English text; the second parameter
selects the type of pronoun:

0 He/She

1 he/she

2 His/Her

3 his/her

4 him/her

Nspouses returns the number of spouses the person has in the database, and
nfamilies returns the number of families the person is a parent/spouse in; these
two values are not necessarily the same. Parents returns the first family that the
person is a child in.

Title returns the value of the first 1 TITL line in the record.

Key returns the key value of a person (or any record); if there is a second parameter
and it is non-null, the leading I (or F or S or E or X) will be stripped. For example, if

23

Chapter 2. LIFELINES PROGRAMMING REFERENCE

key(curindi) returns I23 , then key(curindi,1) returns 23 .

Soundex returns the Soundex code of the person.

Root and Inode return the root node of the person’s GEDCOM node tree. Note that
an INDI value is not a NODE value. If you want to process the nodes within a person
node tree, you must first use the root or inode function to get the root of the person
node tree. Root and inode are synonyms.

Indi returns the person whose key is passed as an argument; if no person has the
key indi returns null. INDI keys are accepted either as Innn or @Innn@.

Firstindi , nextindi and previndi allow you to iterate through all persons in the
database. Firstindi returns the first person in the database in key order. Nextindi
returns the next person after the argument person in key order. Previndi returns the
previous person before the argument person in key order.

Spouses is an iterator that loops through each spouse a person has. The first argu-
ment is a person. The second argument is a person variable that iterates through the
first person’s spouses. The third argument is a family variable that iterates through
the families the person and each spouse are in. The fourth argument is an integer
variable that counts the iterations. The spouses iterator skips any family that has no
spouse, whereas the families iterator does not.

Families is an iterator that loops through the families a person was a spouse/parent
in. The first argument is a person. The second argument is a family variable that iter-
ates through the families the first person was a spouse/parent in. The third argument
iterates through the spouses from the families; if there is no spouse in a particular
family, the variable is set to null for that iteration. The fourth argument is an integer
variable that counts the iterations.

Families and Spouses behave the same except for one situation. If the person is a
spouse in a family that only has one spouse identified, that family does not show
up with the spouses iterator, but it does show up with the families iterator. One
caution, this situation causes the 3rd argument of the families iterator to be set to
null. You must check for this.

Forindi is an iterator that loops through every person in the database in ascending
key order. Its first parameter is a variable that iterates through the persons; its second
parameter is an integer counter variable that counts the persons starting at one.

mothers is an iterator that loops through every female parent of the specified indi-
vidual. Its first parameter is a person; its third parameter is a family variable that
iterates through the familes that the person is a child in; its second parameter is a
person variable that is the female parent associated with the family in the third pa-
rameter; The fourth parameter is a variable that counts the families returned starting
at one.

Parents is an iterator that loops through every family that a person is a child in.
Note: This iterator’s name begins with a capital P. There is another function of the
same name that begins with a lower case p. Its first parameter is a person; its second
parameter is a family variable that iterates through the familes that the person is
a child in; and the third parameter is a variable that counts the families returned
starting at one.

Forindi is an iterator that loops through every person in the database in ascending
key order. Its first parameter is a variable that iterates through the persons; its second
parameter is an integer counter variable that counts the persons starting at one.

fathers and mothers are iterators that loop through each family the specified indi-
vidual is in returns each father or mother found. If a non-traditional family is pro-
cessed, there will be separate iterations for each father or mother found.

24

Chapter 2. LIFELINES PROGRAMMING REFERENCE

Family Functions

EVENT marriage (FAM);

first marriage event of

INDI husband (FAM);

first husband/father of

INDI wife (FAM);

first wife/mother of

INT nchildren (FAM);

number of children in

INDI firstchild (FAM);

first child of

INDI lastchild (FAM);

last child of

25

Chapter 2. LIFELINES PROGRAMMING REFERENCE

STRING key (FAM|INDI , BOOL);

internal key of (works for persons also)

NODE fnode (FAM);

root GEDCOM node of

NODE root (FAM);

root GEDCOM node of

FAM fam (STRING);

find family from key

FAM firstfam (void);

first family in database in key order

FAM lastfam (void);

last family in database in key order

FAM nextfam (FAM);

next family in database in key order

26

Chapter 2. LIFELINES PROGRAMMING REFERENCE

FAM prevfam (FAM);

previous family in database in key order

children (FAM, INDI_V , INT_V) { commands }

loop through children of family

spouses (FAM, INDI_V , INT_V) { commands }

loop through all husbands and wives of a family

forfam (FAM_V, INT_V) { commands }

loop through all families in database

These functions take a family as an argument and return information about it.

Marriage returns the first marriage event found in the family record, if any; it returns
null if there is no marriage event.

Husband returns the first husband/father of the family, if any; and wife returns the
first wife/mother of the family, if any. Each returns null if the requested person is not
in the family.

Nchildren returns the number of children in the family.

Firstchild and lastchild return the first child and last child in a family, respec-
tively.

Key was described in the section on person functions.

Root and fnode return the root node of a family GEDCOM node tree. Note that a
FAM value is not a NODE value. If you want to process the nodes within a family
node tree, you must first use root or fnode function to get the root of the family node
tree. Root and fnode are synonyms.

Famreturns the family who’s key is passed as an argument; if no family has the key
fam returns null. Family keys are accepted either as Fnnn or @Fnnn@.

Firstfam , nextfam and prevfam allow you to iterate through all families in the
database. Firstfam returns the first family in the database in key order. Nextfam
returns the next family after the argument family in key order. Prevfam returns the
previous family before the argument family in key order.

Children is an iterator that loops through the children in a family. Its first param-
eter is a family expression; its second parameter is a variable that iterates through
each child; its third parameter is an integer counter variable that counts the children
starting at one. These two variables may be used within the loop body.

27

Chapter 2. LIFELINES PROGRAMMING REFERENCE

spouses is an iterator that loops through all the husbands and wives of a family. Its
first parameter is a family expression; its second parameter is a variable that iterates
through each parent; its third parameter is an integer counter variable that counts the
parents starting at one. These two variables may be used within the loop body.

Forfam is an iterator that loops through every family in the database in ascending
key order. Its first parameter is a variable that iterates through the families; its second
parameter is an integer counter variable that counts the families starting at one.

Other types of records

forsour (NODE_V, INT_V) { commands }

loop through all sources in database

foreven (NODE_V, INT_V) { commands }

loop through all EVEN nodes in database

forothr (NODE_V, INT_V) { commands }

loop through all other (notes, etc.) nodes in database

forsour is an iterator that loops through all the Source nodes in the database. Its
first argument is the SOUR record and its second parameter is an integer counter
variable that counts the sources elements starting at one. foreven is an iterator that
loops through all the Event nodes in the database. Its first argument is the EVEN
record and its second parameter is an integer counter variable that counts the events
elements starting at one. forothr is an iterator that loops through all the Other nodes
in the database. Its first argument is the record (NOTE, etc.) and its second parameter
is an integer counter variable that counts the nodes starting at one.

List Functions

VOID list (LIST_V);

declare a list

28

Chapter 2. LIFELINES PROGRAMMING REFERENCE

VOID clear (LIST);

clear a list

BOOL empty (LIST);

check if list is empty

INT length (LIST);

length of list

VOID enqueue (LIST , ANY);

enqueue element on list

ANY dequeue (LIST);

dequeue and return element from list

VOID requeue (LIST , ANY);

requeue an element on list

VOID push (LIST , ANY);

push element on list

29

Chapter 2. LIFELINES PROGRAMMING REFERENCE

ANY pop (LIST);

pop and return element from list

VOID setel (LIST , INT , ANY);

array element assignment

ANY getel (LIST , INT);

array element selection

BOOL inlist (LIST , ANY);

is second argument in list.

VOID sort (LIST , LIST);

sort list elements

VOID rsort (LIST , LIST);

reverse sort list elements

LIST dup (LIST);

duplicate a list

30

Chapter 2. LIFELINES PROGRAMMING REFERENCE

forlist (LIST , ANY_V, INT_V) { commands }

loop through all elements of list

LifeLines provides general purpose lists that can be accessed as queues, stacks or
arrays. A list must be declared with the list function before it can be used. Redeclar-
ing an existing variable with the list clears it and restores it to being an empty list. If
the argument to list() is the name of a parameter to the current routine, the reference
to the calling routines list is removed and a new list is created.

A list can have any number of elements. Empty returns true if the list has no elements
and false otherwise. Length returns the length of the list. The only parameter to both
is a list. The following diagram indicates how the various access functions for a list
interact:

31

Chapter 2. LIFELINES PROGRAMMING REFERENCE

32

Chapter 2. LIFELINES PROGRAMMING REFERENCE

33

Chapter 2. LIFELINES PROGRAMMING REFERENCE

Enqueue , dequeue and requeue provide queue access to a list. Enqueue adds an ele-
ment to the back of a queue, dequeue removes and returns the element from the front
of a queue, and requeue adds an element to the front of a queue. The first parameter
to all three is a list, and the second parameter to enqueue and requeue is the value to
be added to the queue and can be any value.

Push and pop provide stack access to a list. Push pushes an element on the stack,
and pop removes and returns the most recently pushed element from the stack. The
first parameter to both is a list, and the second parameter to push is the value to be
pushed on the stack and can be of any type.

Setel and getel provide array access to a list. Setel sets a value of an array element,
and getel returns the value of an array element. The first parameter to both is a
list; the second parameter to both is an integer index into the array; and the third
parameter to setel is the value to assign to the array element and can be of any type.
Array elements are indexed starting at one. Unassigned elements are assumed to be
null (0). Arrays automatically grow in size to accommodate the largest index value
that is used. Passing 0 references the last element at the other end from 1, and -1 the
one before it, etc.

inlist compares the second argument with each element in the list. If it finds a
match inlist returns true.

sort and rsort sort a list, using the elements of the second array to determine the
new order. Both lists are reordered, so essentially both are sorted using the sort or-
der of the second argument. (If only one argument is given, it is sorted on its own
elements.) rsort sorts in order reverse of sort. The order that sort produces places the
smallest element at position 1, and the largest element at the end of the list, such that
dequeue will remove the smallest element.

dup creates a copy of a list. If b is a list, the function set (a,b) makes the variable a a
reference to the list b. If you want to make a new list, you must use set (a,dup (b)).

Forlist is an iterator that loops through the element in a list. Its first parameter is
a LIST expression; its second parameter is a variable that iterates through the list
elements; and its third parameter is an integer counter variable that counts the list
elements starting at one.

Table Functions

VOID table (TABLE_V);

declare a table

VOID insert (TABLE, STRING, ANY);

insert entry in table

34

Chapter 2. LIFELINES PROGRAMMING REFERENCE

ANY lookup (TABLE, STRING);

lookup and return entry from table

INT length (TABLE);

size of the table

BOOL empty (TABLE);

check if table is empty

These functions provide general purpose, keyed tables. A table must be declared with
the table function before it can be used.

Insert adds an object and its key to a table. Its first parameter is a table; the second
parameter is the object’s key; and the third parameter is the object itself. The key must
be a string and the object can be any value. If there already is an object in the table
with that key, the old object is replaced with the new.

Lookup retrieves an object from a table. Its first parameter is a table, and the second
parameter is the object’s key. The function returns the object with that key from the
table; if there is no such object, null is returned. length returns the number of ele-
ments in the table.

GEDCOM Node Functions

STRING xref (NODE);

cross reference index of

STRING tag (NODE);

tag of

35

Chapter 2. LIFELINES PROGRAMMING REFERENCE

STRING value (NODE);

value of

NODEparent (NODE);

parent node of

NODEchild (NODE);

first child of

NODEsibling (NODE);

next sibling of

NODEsavenode (NODE);

copy a node structure

INT level (NODE);

level of a node

fornodes (NODE, NODE_V) { commands }

loop through child nodes

36

Chapter 2. LIFELINES PROGRAMMING REFERENCE

fornotes (NODE, STRING_V) { commands }

loop through notes on a node

traverse (NODE, NODE_V, INT_V) { commands }

loop through all descendent nodes

These functions provide access to the components of a GEDCOM node. All take a
GEDCOM node as their only parameter, and each returns a different value associated
with the node.

Xref returns the cross reference index of the node, if any; tag returns the tag of the
node; and value returns the value of the node, if any. If there is no cross reference,
xref returns null; if there is no value, value returns null.

Parent returns the parent node of the node, if any; child returns the first child node
of the node, if any; and sibling returns the next sibling node of the node, if any.
Whenever there is no such related node, these functions return null. These three func-
tions allow simple navigation through a GEDCOM node tree.

Savenode makes a copy of the node, and the substructure of nodes below the node,
that is passed to it. Beware: the memory used to make the copy is never returned to
the system.

The level function returns the level of the node.

Fornodes is an iterator that loops through the child nodes of a GEDCOM node. Its
first argument is a node expression, and its second parameter is a variable that iter-
ates through each direct child node of the first node.

Fornotes is an iterator that loops through the NOTE nodes of a GEDCOM node.
Its first argument is a node expression, and its second parameter is a variable that
returns the value of the NOTE. The value includes processed sub CONC and CONT
records.

Traverse is an iterator providing a general method for traversing GEDCOM trees.
Its first parameter is a node expression; its second parameter is a variable that iterates
over every node under the first node in a top down, left to right manner; and its third
parameter is a variable that is set to the level of the current node in the iteration.

Event and Date Functions

STRING date (EVENT);

date of, value of first DATEline

37

Chapter 2. LIFELINES PROGRAMMING REFERENCE

STRING place (EVENT);

place of, value of first PLAC line

STRING year (EVENT);

year or, 1st string of 3-4 digits in 1st DATEline

STRING long (EVENT);

date and place, values of 1st DATEand PLAC lines

STRING short (EVENT);

date and place of, abbreviated from

EVENT gettoday (void);

returns the ‘event’ of the current date

VOID setdate (VARSTRING);

creates an event with specified date and assigns to specified variable

VOID dayformat (INT);

set day format for stddate calls

38

Chapter 2. LIFELINES PROGRAMMING REFERENCE

VOID monthformat (INT);

set month format for stddate calls

VOID yearformat (INT);

set year format for stddate calls

VOID eraformat (INT);

set era format for stddate calls

VOID dateformat (INT);

set date format for stddate calls

VOID datepic (STRING);

set custom date format for stddate calls

STRING stddate (EVENT|STRING);

date of, in current format

VOID complexformat (INT);

set complex date format

39

Chapter 2. LIFELINES PROGRAMMING REFERENCE

VOID complexpic (INT , STRING);

set custom complex date picture string

STRING complexdate (EVENT|STRING);

date of, in current complex format

STRING dayofweek (EVENT|STRING);

day of week, in appropriate language

These functions extract information about the dates and places of events.

Date returns the value of the first DATEline in an event, a node in a GEDCOM record
tree. Date finds the first DATE line one level deeper than the event node. Place re-
turns the value of the first PLAC line in an event. Year returns the first three or four
digit number in the value of the first DATEline in an event; this number is assumed
to be the year of the event.

Long returns the verbatim values of the first DATEand PLAC lines in an event, con-
catenated together and separated by a comma. Short abbreviates information from
the first DATEand PLAC lines, concatenates the shortened information together with
a comma separator and returns it. An abbreviated date is its year; an abbreviated
place is the last component in the value, further abbreviated if the component has an
entry in the place abbreviation table.

Gettoday creates an event that has today’s date in the DATEline. Setdate creates an
event that has the specified date in the DATE line, and assigns the new event to the
specified variable.

The next seven functions are used to format dates in a variety of ways. Dayformat ,
monthformat , yearformat , eraformat , and dateformat select style options for for-
matting the day, month, year, era, and overall date structure; stddate returns dates
in the selected style. datepic allows specifying a custom pattern that overrides the
date format selected with dateformat . The string supplied specifies the placement
of the day, month and year in the string with %d, %m and %y. A null argument dis-
ables the overrided format. The argument to stddate is normally an event and the
date is extracted from the event and formatted. If the argument is a date string it is
converted using the current date formats.

The next three functions provide for more complex formatting of dates. Taking
into account the abt, est, cal, bef, aft, fr and to qualifiers on GEDCOM dates.
complexformat selects the format to use. The format effects only the complex
picture, not the format of the date itself. The function complexpic can be used to
specify a custom picture string for any or all of the 9 custom format strings. The
custom string can be canceled by passing a null for the string. When a custom
picture string is provided it overrides both the abbreviated and full word picture

40

Chapter 2. LIFELINES PROGRAMMING REFERENCE

strings. complexdate formats the date similarly to stddate , but with the addition of
the complex date format string selected.

The day format codes passed to dayformat are:

0 leave space before single digit days

1 use leading 0 before single digit days

2 no space or leading 0 before single digit days

The month format codes passed to monthformat are:

0 number with space before single digit months

1 number with leading zero before single digit months

2 number with no space or zero before single digit months

3 upper case abbreviation (eg, JAN, FEB) (localized)

4 capitalized abbreviation (eg, Jan, Feb) (localized)

5 upper case full word (eg, JANUARY, FEBRUARY) (localized)

6 capitalized full word (eg, January, February) (localized)

7 lower case abbreviation (eg, jan, feb) (localized)

8 lower case full word (eg, january, february) (localized)

9 upper case abbreviation in English per GEDCOM (eg, JAN, FEB)

10 lower case roman letter (eg, i, ii)

11 upper case roman letter (eg, I, II)

The year format codes passed to yearformat are:

0 use leading spaces before years with less than four digits

1 use leading 0 before years with less than four digits

2 no space or leading 0 before years

The era format codes passed to eraformat are:

0 no AD/BC markers

1 trailing B.C. if appropriate

2 trailing A.D. or B.C.

11 trailing BC if appropriate

12 trailing AD or BC

21 trailing B.C.E. if appropriate

22 trailing C.E. or B.C.E.

31 trailing BC if appropriate

32 trailing CE or BCE

The full date formats passed to stddate are:

0 da mo yr

1 mo da, yr

41

Chapter 2. LIFELINES PROGRAMMING REFERENCE

2 mo/da/yr

3 da/mo/yr

4 mo-da-yr

5 da-mo-yr

6 modayr

7 damoyr

8 yr mo da

9 yr/mo/da

10 yr-mo-da

11 yrmoda

12 yr (year only, omitting all else)

13 da/mo yr

14 (As in GEDCOM)

The complex date formats selected by the complexformat and used by complexdate
are:

Mode Example

3 use abbreviations in uppercase ABT 1 JAN 2002

4 use abbreviations in titlecase Abt 1 JAN 2002

5 use uppercased full words ABOUT 1 JAN 2002

6 use titlecased full words About 1 JAN 2002

7 use abbreviations in lowercase abt 1 JAN 2002

8 use lowercase full words about 1 JAN 2002

The complex date string pictures that can be overridden with the complexpic are:

Abbreviation Full word

0 abt %1 about %1

1 est %1 estimated %1

2 cal %1 calculated %1

3 bef %1 before %1

4 aft %1 after %1

5 bet %1 and %2 between %1 and %2

6 fr %1 from %1

7 to %1 to %1

8 fr %1 to %2 from %1 to $2

The function dayofweek is a way to access the (localized) day name, eg, "Thursday",
for a given date.

42

Chapter 2. LIFELINES PROGRAMMING REFERENCE

Date Arithmetic

FLOAT date2jd (EVENT|STRING);

julian date number is number of days since origin (-4712/01/01 12h00 UT) of
specified date

EVENT jd2date (FLOAT);

Convert julian date number to date (actually to event structure with subordinate
date)

These functions allow adding or subtracting days from dates.

date2jd converts a date into a number of days, which can then be adjusted by simple
arithmetic. Finally, jd2date converts the number of days back into a date.

Julian calendar is used before 4 OCT 1582, and Gregorian calendar afterwards.

As with other date functions, calendar escapes (eg, "@#DRENCH R#@") are not re-
spected, and the only the first date of the DATE record is used.

Value Extraction Functions

VOID extractdate (NODE, INT_V , INT_V , INT_V);

extract a date

VOID extractnames (NODE, LIST_V , INT_V , INT_V);

extract a name

43

Chapter 2. LIFELINES PROGRAMMING REFERENCE

VOID extractplaces (NODE, LIST_V , INT_V);

extract a place

VOID extracttokens (STRING, LIST_V , INT_V , STRING);

extract tokens

VOID extractdatestr (VARB, VARB, VARB, VARB, VARB, STRING);

extract date from string

Value extraction functions read the values of certain lines and return those values in
extracted form.

Extractdate extracts date values from either an event node or DATEnode. The first
parameter must be a node; if its tag is DATE, the date is extracted from the value of
that node; if its tag is not DATE, the date is extracted from the first DATE line one
level below the argument node. The remaining three arguments are variables. The
first is assigned the integer value of the extracted day; the second is assigned the
integer value of the extracted month; and the third is assigned the integer value of
the extracted year.

Extractnames extracts name components from a NAMEline. Its first argument is ei-
ther an INDI or a NAMEnode. If it is a NAMEline, the components are extracted from
the value of that node; if it is an INDI line, the components are extracted from the
value of the first NAMEline in the person record. The second argument is a list that
will hold the extracted components. The third argument is an integer variable that
is set to the number of extracted components. The fourth argument is a variable that
is set to the index (starting at one) of the surname component; the / characters are
removed from around the surname component. If there is no surname this argument
variable is set to zero.

Extractplaces extracts place components from a PLACnode. The first argument is a
node; if its tag is PLAC, the places are extracted from the value of the node; if its tag is
not PLAC, places are extracted from the first PLACline one level below the argument
node. The second parameter is a list that will hold the extracted components. The
third argument is an integer variable that is set to the number of extracted compo-
nents. Place components are defined by the comma-separated portions of the PLAC
value; leading and trailing white space is removed from the components, while all
internal white space is retained.

Extracttokens extracts tokens from a string and places them in a list. The first
argument is the string to extract tokens from. The second argument is the list to
hold the tokens. The third argument is an integer variable that is set to the number
of tokens extracted. The fourth parameter is the string of delimiter characters that
extracttokens uses to break the input string into tokens.

44

Chapter 2. LIFELINES PROGRAMMING REFERENCE

extractdatestr extracts date values from a . STRING. It is intended for internal
verification of date extraction code. The remaining five arguments are variables. The
second is assigned the integer value of the extracted day; the third is assigned the
integer value of the extracted month; and the fourth is assigned the integer value of
the extracted year.

User Interaction Functions

VOID getindi (INDI_V , STRING);

identify person through user interface

VOID getindiset (SET_V, STRING);

identify set of persons through user interface

VOID getfam (FAM_V);

identify family through user interface

VOID getint (INT_V , STRING);

get integer through user interface

VOID getstr (STRING_V, STRING);

get string through user interface

45

Chapter 2. LIFELINES PROGRAMMING REFERENCE

INDI choosechild (INDI|FAM);

select child of person/family through user interface

FAM choosefam (INDI);

select family person is in as spouse

INDI chooseindi (SET);

select person from set of persons

INDI choosespouse (INDI);

select spouse of person

SET choosesubset (SET);

select a subset of persons from set of persons

INT menuchoose (LIST , STRING);

select from a list of options

These functions interact with the user to get information needed by the program.

Getindi asks the user to identify a person. The first argument is a variable that is set
to the person. The second is an optional string to use as a prompt. Getindiset asks
the user to identify a set of persons. Getfam asks the user identify a family. Getint
and getstr ask the user enter an integer and string, respectively.

Choosechild asks the user select a child of a family or person; its single argument is
a person or family; it return the child. Choosefam has the user select a family that a

46

Chapter 2. LIFELINES PROGRAMMING REFERENCE

person is in as a spouse; its argument is a person; it returns the family. Chooseindi
has the user select one person from a set of persons; its argument in a set of persons;
it returns the chosen person. Choosespouse has the user select a spouse of a person;
its argument is a person; it returns the chosen spouse. Choosesubset has the user
select a subset of persons from a set of persons; its argument is the chosen subset.

Menuchoose allows the user to select from an arbitrary menu. The first argument is
a list of strings making up the items in the menu; the second, optional argument
is a prompt string for the menu; menuchoose returns the integer index of the item
selected by the user; if the user doesn’t select an item, zero is returned.

String Functions

STRING lower (STRING);

convert to lower case

STRING upper (STRING);

convert to upper case

STRING capitalize (STRING);

capitalize first letter

STRING titlecase (STRING);

capitalize first letter of each word

STRING trim (STRING, INT);

trim to length

47

Chapter 2. LIFELINES PROGRAMMING REFERENCE

STRING rjustify (STRING, INT);

right justify in field

STRING concat (STRING, STRING ...);

catenate two strings

STRING strconcat (STRING, STRING ...);

catenate two strings

INT strlen (STRING);

number of characters in string

STRING substring((STRING, INT , INT);

substring function

INT index (STRING, STRING, INT);

index function

STRING d(INT);

number as decimal string

48

Chapter 2. LIFELINES PROGRAMMING REFERENCE

STRING f (FLOAT, INT);

number as floating point string

STRING card (INT);

number in cardinal form (one, two, ...)

STRING ord (INT);

number in ordinal form (first, second, ...)

STRING alpha (INT);

convert number to Latin letter (a, b, ...)

STRING roman (INT);

number in Roman numeral form (i, ii, ...)

STRING strsoundex (STRING);

find SOUNDEX value of arbitrary string

INT strtoint (STRING);

convert numeric string to integer

49

Chapter 2. LIFELINES PROGRAMMING REFERENCE

INT atoi (STRING);

convert numeric string to integer

INT strcmp (STRING, STRING);

general string compare

BOOL eqstr (STRING, STRING);

compare strings for equality

BOOL nestr (STRING, STRING);

compare strings for inequality

These functions provide string handling. Prior to version 3.0.6, many of them used an
approach to memory management chosen for absolute minimal memory footprint.
A function using this approach constructed its output string in its own string buffer,
reusing that buffer each time it was called. When a function using this approach
returned a string value it returned its buffer. In consequence the strings returned by
these functions were to be either used or saved before the function was called again.

Lower and upper convert the letters in their arguments to lower or upper case, re-
spectively. Capitalize converts the first character of the argument, if it is a letter, to
upper case. Lower and upper historically used the buffer return method; capitalize
operates on and returns its argument. titlecase converts the first letter of each word
if it is a letter, to upper case and all other characters to lower case.

Trim shortens a string to the length specified by the second parameter. If the string
is already of that length or shorter the string is not changed. Rjustify right justifies
a string into another string of the length specified by the second parameter. If the
original string is shorter than the justified string, blanks are inserted to the left of
the original string; if the string is longer than the justified string, the original string
is truncated on the right. Trim historically used the buffer return method; rjustify
creates and returns a new string.

Concat and strconcat catenate strings and return the result. They are identical func-
tions. They may take two to 32 string arguments; null arguments are allowed. The
arguments are concatenated together into a single, newly allocated string, which is
returned.

Strlen returns the length of the string argument.

50

Chapter 2. LIFELINES PROGRAMMING REFERENCE

Substring returns a substring of the first argument string. The second and third
arguments are the indices of the first and last characters in the argument string to use
to form the substring. The indexes are relative one. Substring historically used the
buffer return method.

Index returns the character index of the nth occurrence of a substring within a string.
The index is the relative one character offset to the beginning of the substring. The
first argument is the string; the second argument is the substring; and the third argu-
ment is the occurrence number.

D, card , ord , alpha and roman convert integers to strings. D converts an integer to a
numeric string; card converts an integer to a cardinal number string (eg, one, two,
three); ord converts an integer to an ordinal number (eg, first, second, third);
alpha converts an integer to a letter (eg, a, b, c); and roman converts an integer to
a Roman numeral (eg, i, ii, iii).

The f function converts a float to a string. The optional second argument specifies
the precision of the output. The default precision is 2.

Strsoundex converts an arbitrary string to a SOUNDEX value. Non-ASCII text char-
acters are ignored in the string.

Strtoint converts a numeric string to an integer. Atoi is identical to strtoint .

Strcmp compares two strings and returns an integer that is less than zero, equal to
zero, or greater than zero, if, respectively, the first string is lexicographically less than,
equal to, or greater than the second string. Eqstr and nestr return whether two
strings are equal or not equal, respectively. Strcmp , Eqstr , and nestr all treat null
strings as empty strings, which is to say they pretend that a null string is actually "".
This means that all null and empty strings compare as equal.

Output Mode Functions

VOID linemode (void);

use line output mode

VOID pagemode(INT , INT);

use page output mode with given page size

VOID col (INT);

position to column in output

51

Chapter 2. LIFELINES PROGRAMMING REFERENCE

INT getcol (void);

get current column in output

VOID row (INT);

position to row in output

VOID pos (INT , INT);

position to (row, col) coordinate in output

VOID pageout (void);

output page buffer

STRING nl (void);

newline character

STRING sp (void);

space character

STRING qt (void);

double quote character

52

Chapter 2. LIFELINES PROGRAMMING REFERENCE

VOID newfile (STRING, BOOL);

send program output to this file

STRING outfile (void);

return name of current program output file

VOID copyfile (STRING);

copy file contents to program output file

BOOLEANtest (STRING, STRING);

tests for characteristics of a file

VOID print (STRING, STRING ...);

print string to standard output window

Reports can be generated in two modes, line mode and page mode. Linemode selects
line mode and pagemode selects page mode; line mode is the default. The first param-
eter to pagemode is the number of rows per page; the second parameter is the number
of columns per page. When in the line mode report output is written directly to the
output file as the program runs, line by line. When in page mode output is buffered
into pages which are written to the output file when pageout is called. Page mode is
useful for generating charts (eg, pedigree charts or box charts) where it is convenient
to compute the two-dimensional location of output.

Col positions output to the given column. If the current column is greater than the
argument, col positions output to the given column on the next line. Col works in
both modes. Getcol returns the current column in the output.

Rowpositions output to the first character in the given row; row can only be used in
page mode.

53

Chapter 2. LIFELINES PROGRAMMING REFERENCE

Pos positions output to a specified row and column coordinate; the first argument
specifies the row, and the second specifies the column. Pos can only be used in page
mode.

Nl write a new line character to the output file; sp writes a space character to the
output file; and qt writes a quote character to the output file. Note that \n and \’ can
be used within string values to represent the newline and double quote characters.

Newfile specifies the name of the report output file. Its first argument is the file’s
name; its second argument is an append flag - if its value is non-zero the report ap-
pends to this file; if its value is zero the report overwrites the contents of the file.
Newfile can be called many times; this allows a single report program to generate
many report output files during one execution. Programs are not required to use
newfile ; if it is not used then LifeLines automatically asks for the name of the re-
port output file.

Outfile returns the name of the current report output file.

Copyfile copies the contents of a file to the report output file; its argument is a string
whose value is the name of a file; if the file name is not absolute nor relative, then the
LLPROGRAMS environment variable, if set, will be used to search for the file; the file
is opened and its contents copied to the report output file.

Test will check for a specified property of the specified file. The first argument is the
property, the second argument is the filename. Supported properties are: r - file is
readable w - file is writeable x - file is executable s - file has non-zero size z - file has
zero size e - file exists f - check if argument is a file d - check if argument is a directory
The return value is TRUE or FALSE, depending on whether the file had the specified
property or not.

Print prints its argument string to the standard output window; print may have
one to 32 arguments.

Person Set Functions and GEDCOM Extraction

VOID indiset (SET_V);

declare a set variable

VOID addtoset (SET, INDI , ANY);

add a person to a set

VOID deletefromset (SET, INDI , BOOL);

remove a person from a set

54

Chapter 2. LIFELINES PROGRAMMING REFERENCE

INT length (SET);

size of a set

SET union (SET, SET);

union of two sets

SET intersect (SET, SET);

intersection of two sets

SET difference (SET, SET);

difference of two sets

SET parentset (SET);

set of all parents

SET childset (SET);

set of all children

SET spouseset (SET);

set of all spouses

55

Chapter 2. LIFELINES PROGRAMMING REFERENCE

SET siblingset (SET);

set of all siblings

SET ancestorset (SET);

set of all ancestors

SET descendentset (SET);

set of all descendents

SET descendantset (SET);

same as descendentset; spelling

SET uniqueset (SET);

remove duplicates from set

VOID namesort (SET);

sort indiset by name

VOID keysort (SET);

sort indiset by key values

56

Chapter 2. LIFELINES PROGRAMMING REFERENCE

VOID valuesort (SET);

sort indiset by auxiliary values

VOID genindiset (STRING, SET);

generate indiset from GEDCOM name string

BOOL inset (SET, INDI);

true if the Individual is in the set.

forindiset (SET, INDI_V , ANY_V, INT_V) { commands }

loop through all persons in person set

These functions allow you to manipulate person sets. A person set is a potentially
large set of persons; each person may have an arbitrary value associated with
him/her. A person set must be declared with the indiset function before it can be
used.

Addtoset adds a person to a set. The first argument is the set; the second argument is
the person; and the third argument may be any value. The same person may be added
to a set more than once, each time with a different value. Deletefromset removes a
person from a set. The first argument is the set; the second argument is the person; if
the third parameter is true all of the person’s entries are removed from the set; if false
only the first entry is removed. Length returns the number of persons in a person set.

Union , intersect and difference return the set union, set intersection and set dif-
ference, respectively, of two person sets. Each functions takes two person sets as argu-
ments and returns a third person set. The functions actually modify their argument
sets, both reordering them into canonical key order and removing any duplicates
(these operations are necessary to easily implement these types of set functions).

Parentset , childset , spouseset and siblingset return the set of all parents, set of
all children, set of all spouses and set of all siblings, respectively, of the set of persons
in their argument. In all cases there is no change to the argument person set.

Ancestorset returns the set all ancestors of all persons in the argument set.
Descendentset returns the set of all descendents of all persons in the argument set.
Descendantset is the same as descendentset ; it allows an alternate spelling.

Uniqueset sorts a person set by key value and then removes all entries with duplicate
keys; the input set is modified and returned.

57

Chapter 2. LIFELINES PROGRAMMING REFERENCE

Namesort , keysort and valuesort sort a set of persons by name, by key and by
associated value, respectively.

Each person in a person set has an associated value. When a person is added to a
set with addtoset , the value is explicitly assigned. When new sets are created by
other functions, a number of rules are used to associate values with persons as they
are added to the new sets. For parentset , childset and spouseset the values are
copied from the first input set person that causes the new person to be added to the
set. For union , intersect and difference , the values are copied from the values
in the first input set, except in the case of union , when persons are taken from the
second set alone, in which case the values come from there. For ancestorset and
descendantset the value is set to the number of generations the new person is away
from the first person in the input set that the new person is related to. If the new
person is related to more than one person in the input set, the value is set for the
nearest relationship; that is, the value is as low as possible. Valuesort sorts a person
set by the values of these auxiliary values.

Genindiset generates the set of persons that matches a string whose value is a name
in GEDCOM format. Genindiset uses the same algorithm that matches names en-
tered at the browse prompt or by the user interaction getindiset function.

Inset returns true if the the specified individual is in the SET.

Forindiset is an iterator that loops through each person in an indiset. The first pa-
rameter is an indiset. The second parameter is a variable that iterates through each
person in the set. The third parameter iterates through the values associated with the
persons. The fourth parameter is an integer variable that counts the iterations.

Record Update Functions

NODEcreatenode (STRING, STRING);

create a GEDCOM node

VOID addnode (NODE, NODE, NODE);

add a node to a GEDCOM tree

VOID detachnode (NODE);

delete a node from a GEDCOM tree

58

Chapter 2. LIFELINES PROGRAMMING REFERENCE

VOID writeindi (INDI);

write a person back to the database

VOID writefam (FAM);

write a family back to the database

These functions allow you to modify an internal GEDCOM node tree.

Createnode creates a GEDCOM node; the two arguments are tag and value strings,
respectively; the value string can be null. Addnode adds a node to a node tree. The
first argument is the new node; the second is the node in the tree that becomes the
parent of the new node; the third is the node in the tree that becomes the previous
sibling of the new node; this argument is null if the new node is to become the first
child of the parent. Detachnode removes a node from a node tree. writeindi writes
an individual record back to the database, and writefam writes a family record back
to the database, allowing the report to make permanent changes to the database.

The node functions only change data in memory; there is no effect on the database
until and unless writeindi or writefam are called.

Record Linking Functions

BOOL reference (STRING);

determine if string is a cross reference

NODEdereference (STRING);

reference cross reference or key to node tree

These functions allow you to recognize values that are cross references and to read the
records they refer to. Reference returns true if its string argument is a cross reference
value, that is, the internal key of one of the records in the database. Dereference
returns the node tree of the record referred to by its cross-reference string argument.

59

Chapter 2. LIFELINES PROGRAMMING REFERENCE

Miscellaneous Functions

VOID lock (RECORD|NODE);

lock a record (or record containing specified node) in memory

VOID unlock (RECORD|NODE);

unlock a record (or record containing specified node) from memory

STRING database (void);

return name of current database

STRING program (void);

return name of current program

STRING version (void);

return version of LifeLines program

VOID system (STRING);

execute string as a UNIX shell command

60

Chapter 2. LIFELINES PROGRAMMING REFERENCE

INT heapused (void);

amount of heap used for windows

STRING getproperty (STRING);

extract system or user property. Function available after v3.0.5.

STRING setlocale (STRING);

set the locale

STRING bytecode (STRING, STRING);

encode a string in a codeset

STRING convertcode (STRING, STRING, STRING);

convert string from one codeset to another

VOID debug (BOOLEAN);

set interperter debug mode

STRING pvalue (ANY);

dump information about a pvalue

61

Chapter 2. LIFELINES PROGRAMMING REFERENCE

VOID free (ANY);

free space associated with a variable

Lock and unlock are used to lock a person or family into RAM memory, and to un-
lock a person or family from RAM memory, respectively.

Database returns the name of the current database, useful in titling reports. program
returns the name of the current report program. Version returns the version of the
running LifeLines program, eg, 3.0.61 .

System executes its string argument as a UNIX (or MS-Windows as appropriate) shell
command, by invoking the system shell. This will not occur if the user has chosen to
disallow report system calls (via the DenySystemCalls user option).

The heapused function returns the amount of system heap that is in use at the time.
This is implemented only on windows.

The getproperty function extracts system or user properties. Properties are named
group.subgroup.property, group.property or even property. The keys are available at
the moment can be found in the ll-userguide under System and User Properties.

The setlocale function sets the locale and returns the previous setting of locale.

The bytecode function converts the supplied string with escape codes to the cur-
rent codeset from the internal codeset or from the codeset specified by the optional
second parameter if specified. A escaped code is a dollar sign ($) followed by 2 hex
characters, e.g. $C1.

The convertcode function converts a string to another codeset. In the two argument
form, the second argument is the destination codeset, and the source codeset is the
internal codeset. In the 3 argument form, the second argument is the source codeset
and the third argument is the destination codeset. (See the section of the LifeLines
User Guide on codeset conversions.) For example, if your internal codeset is UTF-8,
and the report codeset is UTF-8, the following code,

"<p>\n"
convertcode(str,"UTF-8//html")

writes the first line of output as it is written, but will apply the html sub-conversion to
all the characters in the string str. The special html codes, like the less than or greater
than, will be escaped when printing the second string, but not when printing the first
string.

The debug function turns on or off programming debugging. When enabled gobs of
information is printed as a LifeLines program is run. This can be useful to figure
out why a program is not behaving as expected.

The pvalue function returns a string that represents the contents of a variable in the
interpreter. This is present for debug purposes.

The function free deallocates space associated with the variable provided as argu-
ment 1. Care must be taken when free is used in a function on a variable which is a
parameter to the function. free will not effect the variable in the calling program.

Deprecated Functions
The baptism finds christening (CHR) events. The types of events desired to be found,
depend on the nature of the report being written. It is recommended that custom
access routines be used instead of baptism .

62

Chapter 2. LIFELINES PROGRAMMING REFERENCE

EVENT baptism (INDI);

first baptism event of

If you want a routine that returns the first event for an individual that is a bap-
tism, LDS baptism, Christening or Adult Christening, the following routine can
be used.

func get_baptism(indi) {
fornodes(indi,node) {

if (index(" BAPM BAPL CHR CHRA ",upper(tag(node)),1)) {
return(node)

}
}
return(0)

}

If you want to search for additional events or fewer events you can modify the
string in the index call acccordingly. Likewise, if you want the to prioritize the
results, finding a christening event if one exists, else finding a baptism event if
one exists, then finding an LDS baptism event, and finally a christening event,
the following function is suggested.

/* get_baptism(indi) returns a baptism event if found
events CHR, BAPM, BAPL, and CHRA are considered, in that order

*/
func get_baptism(indi, prefs)
{

set(chr, 0)
set(bapm, 0)
set(bapl, 0)
set(chra, 0)
fornodes(indi,node)
{

if (and(eq(upper(tag(node)), "CHR"), not(chr)) { set(chr, node) }
if (and(eq(upper(tag(node)), "BAPM"), not(bapm)) { set(bapm, node) }
if (and(eq(upper(tag(node)), "BAPL"), not(bapl)) { set(bapl, node) }
if (and(eq(upper(tag(node)), "CHRA"), not(chra)) { set(chra, node) }

}
if (chr) { return(chr) }
if (bapm) { return(bapm) }
if (bapl) { return(bapl) }
return(chra)

}

The functionality of the following three functions, getindimsg , getintmsg and
getstrmsg is now available using the optional parameter of getindi , getint and
getstr . These functions should no longer be used as they will be removed from a
future version of Lifelines .

63

Chapter 2. LIFELINES PROGRAMMING REFERENCE

VOID getindimsg (INDI_V , STRING);

identify person through user interface

VOID getintmsg (INT_V , STRING);

get integer through user interface

VOID getstrmsg (STRING_V, STRING);

get string through user interface

Three functions are available for to generate GEDCOM format output to the report
output file of all persons in the argument person set. These functions do not in most
cases generate consistent and usable output. This can be done with a program, but it
is suggested that these routines are probably not what you really wanted.

Gengedcom output contains a person record for each person in the set, and all the
family records that link at least two of the persons in the set together. This function is
provided for backward compatibility. Source, Event and Other(X) record pointers are
output unmodified, but none of their records are output - this yields an inconsistent
output.

Gengedcomweak output does not contain Source, Event or Other(X) record pointers
or their records. Gengedcomstrong includes the Source, Event and Other(X) record
pointers and all top-level nodes referenced by them.

VOID gengedcom (SET);

generate GEDCOM file from person set

VOID gengedcomweak (SET);

generate GEDCOM file from person set

64

Chapter 2. LIFELINES PROGRAMMING REFERENCE

VOID gengedcomstrong (SET);

generate GEDCOM file from person set

By the release of version 3.0.6, all string values are local copies, and the save and
strsave functions should be entirely unnecessary. Save is present only for compati-
bility reasons. Previously it duplicated its argument (to prevent strings from becom-
ing stale; this is not currently necessary (and this function no longer does anything).
Strsave is the same function as save .

STRING save (STRING);

save and return copy of string

STRING strsave (STRING);

same as save function

Use detachnode instead of deletenode .

VOID deletenode (NODE);

delete a node from a GEDCOM tree

In releases after version 3.0.39, the length function accepts an argument of type list,
set or table. the lengthset function is no longer needed.

INT lengthset (SET);

size of a set

65

Chapter 2. LIFELINES PROGRAMMING REFERENCE

66

	THE LIFELINES PROGRAMMING SUBSYSTEM AND REPORT GENERATOR
	Table of Contents
	Chapter 1. Report Programming Manual
	Introduction
	Tutorial Ahnentafel report
	Template for creating new reports
	Invoking Reports

	Chapter 2. LIFELINES PROGRAMMING REFERENCE
	Procedures and Functions
	Comments
	Statements
	Expressions
	Include Feature
	Builtin Functions
	Value Types
	ANY
	BOOL
	EVENT
	FAM
	FLOAT
	INDI
	INT
	LIST
	NODE
	NUMBER
	SET
	STRING
	TABLE
	VOID
	Iterators
	Arithmetic and Logic Functions
	NUMBER add(NUMBER, NUMBER ...);
	NUMBER sub(NUMBER, NUMBER);
	NUMBER mul(NUMBER, NUMBER ...);
	NUMBER div(NUMBER, NUMBER);
	INT mod(INT, INT);
	NUMBER exp(NUMBER, INT);
	NUMBER neg(NUMBER);
	FLOAT float(INT);
	INT int(FLOAT);
	VOID incr(NUMBER,NUMBER);
	VOID decr(NUMBER,NUMBER);
	BOOL and(BOOL, BOOL ...);
	BOOL or(BOOL, BOOL ...);
	BOOL not(BOOL);
	BOOL eq(ANY, ANY);
	BOOL ne(ANY, ANY);
	BOOL lt(ANY, ANY);
	BOOL gt(ANY, ANY);
	BOOL le(ANY, ANY);
	BOOL ge(ANY, ANY);
	Trigonometric and Spherical Calculations
	FLOAT sin(FLOAT);
	FLOAT cos(FLOAT);
	FLOAT tan(FLOAT);
	FLOAT arcsin(FLOAT);
	FLOAT arccos(FLOAT);
	FLOAT arctan(FLOAT);
	VOID dms2deg(INT degree, INT minute, INT second, FLOATV decimal);
	void deg2dms(FLOAT decimal, INTV degree, INTV minute, INTV second);
	FLOAT spdist(FLOAT lat0, FLOAT long0, FLOAT lat1, FLOAT long1);
	Person Functions
	STRING name(INDI, BOOL);
	STRING fullname(INDI, BOOL, BOOL, INT);
	STRING surname(INDI);
	STRING givens(INDI);
	STRING trimname(INDI, INT);
	EVENT birth(INDI);
	EVENT death(INDI);
	EVENT burial(INDI);
	INDI father(INDI);
	INDI mother(INDI);
	INDI nextsib(INDI);
	INDI prevsib(INDI);
	STRING sex(INDI);
	BOOL male(INDI);
	BOOL female(INDI);
	STRING pn(INDI, INT);
	INT nspouses(INDI);
	INT nfamilies(INDI);
	FAM parents(INDI);
	STRING title(INDI);
	STRING key(RECORD, BOOL);
	STRING soundex(INDI);
	NODE inode(INDI);
	NODE root(INDI);
	INDI indi(STRING);
	INDI firstindi(void);
	INDI lastindi(void);
	INDI nextindi(INDI);
	INDI previndi(INDI);
	spouses (INDI, INDIV, FAMV, INTV) { commands }
	families (INDI, FAMV, INDIV, INTV) { commands }
	forindi (INDIV, INTV) { commands }
	mothers (INDI, INDIV, FAMV, INTV) { commands }
	fathers (INDI, INDIV, FAMV, INTV) { commands }
	Parents (INDI, FAM, INTV) { commands }
	Family Functions
	EVENT marriage(FAM);
	INDI husband(FAM);
	INDI wife(FAM);
	INT nchildren(FAM);
	INDI firstchild(FAM);
	INDI lastchild(FAM);
	STRING key(FAM|INDI, BOOL);
	NODE fnode(FAM);
	NODE root(FAM);
	FAM fam(STRING);
	FAM firstfam(void);
	FAM lastfam(void);
	FAM nextfam(FAM);
	FAM prevfam(FAM);
	children (FAM, INDIV, INTV) { commands }
	spouses (FAM, INDIV, INTV) { commands }
	forfam (FAMV, INTV) { commands }
	Other types of records
	forsour (NODEV, INTV) { commands }
	foreven (NODEV, INTV) { commands }
	forothr (NODEV, INTV) { commands }
	List Functions
	VOID list(LISTV);
	VOID clear(LIST);
	BOOL empty(LIST);
	INT length(LIST);
	VOID enqueue(LIST, ANY);
	ANY dequeue(LIST);
	VOID requeue(LIST, ANY);
	VOID push(LIST, ANY);
	ANY pop(LIST);
	VOID setel(LIST, INT, ANY);
	ANY getel(LIST, INT);
	BOOL inlist(LIST, ANY);
	VOID sort(LIST, LIST);
	VOID rsort(LIST, LIST);
	LIST dup(LIST);
	forlist (LIST, ANYV, INTV) { commands }
	Table Functions
	VOID table(TABLEV);
	VOID insert(TABLE, STRING, ANY);
	ANY lookup(TABLE, STRING);
	INT length(TABLE);
	BOOL empty(TABLE);
	GEDCOM Node Functions
	STRING xref(NODE);
	STRING tag(NODE);
	STRING value(NODE);
	NODE parent(NODE);
	NODE child(NODE);
	NODE sibling(NODE);
	NODE savenode(NODE);
	INT level(NODE);
	fornodes (NODE, NODEV) { commands }
	fornotes (NODE, STRINGV) { commands }
	traverse (NODE, NODEV, INTV) { commands }
	Event and Date Functions
	STRING date(EVENT);
	STRING place(EVENT);
	STRING year(EVENT);
	STRING long(EVENT);
	STRING short(EVENT);
	EVENT gettoday(void);
	VOID setdate(VARSTRING);
	VOID dayformat(INT);
	VOID monthformat(INT);
	VOID yearformat(INT);
	VOID eraformat(INT);
	VOID dateformat(INT);
	VOID datepic(STRING);
	STRING stddate(EVENT|STRING);
	VOID complexformat(INT);
	VOID complexpic(INT, STRING);
	STRING complexdate(EVENT|STRING);
	STRING dayofweek(EVENT|STRING);
	Date Arithmetic
	FLOAT date2jd(EVENT|STRING);
	EVENT jd2date(FLOAT);
	Value Extraction Functions
	VOID extractdate(NODE, INTV, INTV, INTV);
	VOID extractnames(NODE, LISTV, INTV, INTV);
	VOID extractplaces(NODE, LISTV, INTV);
	VOID extracttokens(STRING, LISTV, INTV, STRING);
	VOID extractdatestr(VARB, VARB, VARB, VARB, VARB, STRING);
	User Interaction Functions
	VOID getindi(INDIV, STRING);
	VOID getindiset(SETV, STRING);
	VOID getfam(FAMV);
	VOID getint(INTV, STRING);
	VOID getstr(STRINGV, STRING);
	INDI choosechild(INDI|FAM);
	FAM choosefam(INDI);
	INDI chooseindi(SET);
	INDI choosespouse(INDI);
	SET choosesubset(SET);
	INT menuchoose(LIST, STRING);
	String Functions
	STRING lower(STRING);
	STRING upper(STRING);
	STRING capitalize(STRING);
	STRING titlecase(STRING);
	STRING trim(STRING, INT);
	STRING rjustify(STRING, INT);
	STRING concat(STRING, STRING ...);
	STRING strconcat(STRING, STRING ...);
	INT strlen(STRING);
	STRING substring((STRING, INT, INT);
	INT index(STRING, STRING, INT);
	STRING d(INT);
	STRING f(FLOAT, INT);
	STRING card(INT);
	STRING ord(INT);
	STRING alpha(INT);
	STRING roman(INT);
	STRING strsoundex(STRING);
	INT strtoint(STRING);
	INT atoi(STRING);
	INT strcmp(STRING, STRING);
	BOOL eqstr(STRING, STRING);
	BOOL nestr(STRING, STRING);
	Output Mode Functions
	VOID linemode(void);
	VOID pagemode(INT, INT);
	VOID col(INT);
	INT getcol(void);
	VOID row(INT);
	VOID pos(INT, INT);
	VOID pageout(void);
	STRING nl(void);
	STRING sp(void);
	STRING qt(void);
	VOID newfile(STRING, BOOL);
	STRING outfile(void);
	VOID copyfile(STRING);
	BOOLEAN test(STRING, STRING);
	VOID print(STRING, STRING ...);
	Person Set Functions and GEDCOM Extraction
	VOID indiset(SETV);
	VOID addtoset(SET, INDI, ANY);
	VOID deletefromset(SET, INDI, BOOL);
	INT length(SET);
	SET union(SET, SET);
	SET intersect(SET, SET);
	SET difference(SET, SET);
	SET parentset(SET);
	SET childset(SET);
	SET spouseset(SET);
	SET siblingset(SET);
	SET ancestorset(SET);
	SET descendentset(SET);
	SET descendantset(SET);
	SET uniqueset(SET);
	VOID namesort(SET);
	VOID keysort(SET);
	VOID valuesort(SET);
	VOID genindiset(STRING, SET);
	BOOL inset(SET, INDI);
	forindiset(SET, INDIV, ANYV, INTV) { commands }
	Record Update Functions
	NODE createnode(STRING, STRING);
	VOID addnode(NODE, NODE, NODE);
	VOID detachnode(NODE);
	VOID writeindi(INDI);
	VOID writefam(FAM);
	Record Linking Functions
	BOOL reference(STRING);
	NODE dereference(STRING);
	Miscellaneous Functions
	VOID lock(RECORD|NODE);
	VOID unlock(RECORD|NODE);
	STRING database(void);
	STRING program(void);
	STRING version(void);
	VOID system(STRING);
	INT heapused(void);
	STRING getproperty(STRING);
	STRING setlocale(STRING);
	STRING bytecode(STRING, STRING);
	STRING convertcode(STRING, STRING, STRING);
	VOID debug(BOOLEAN);
	STRING pvalue(ANY);
	VOID free(ANY);
	Deprecated Functions
	EVENT baptism(INDI);
	VOID getindimsg(INDIV, STRING);
	VOID getintmsg(INTV, STRING);
	VOID getstrmsg(STRINGV, STRING);
	VOID gengedcom(SET);
	VOID gengedcomweak(SET);
	VOID gengedcomstrong(SET);
	STRING save(STRING);
	STRING strsave(STRING);
	VOID deletenode(NODE);
	INT lengthset(SET);

